ML501 Reference Design

User Guide

UG227 (v1.0) June 18, 2007

Xilinx is disclosing this Document and Intellectual Property (hereinafter "the Design") to you for use in the development of designs to operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED "AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring failsafe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or weapons systems ("High-Risk Applications"). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision	
06/18/07	1.0	Initial Xilinx release.	

Table of Contents

Preface: About This Guide

Additional Documentation	. 5
Additional Support Resources	. 5
Typographical Conventions	
Online Document	. 6

ML501 Reference Design

Introduction	7
Reference Designs	
Base System Builder	3
EDK Design)
Stand-Alone Software Applications 10)
References	<u>)</u>

Preface

About This Guide

This user guide introduces several designs that demonstrate the Virtex[™]-5 LX device features using the using the ML501 Evaluation Platform.

Additional Documentation

The following documents are also available for download at <u>http://www.xilinx.com/virtex5</u>.

Virtex-5 Family Overview

The features and product selection of the Virtex-5 family are outlined in this overview.

• Virtex-5 Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the Virtex-5 family.

• XtremeDSPTM Design Considerations

This guide describes the XtremeDSP slice and includes reference designs for using the DSP48E slice.

• Virtex-5 Configuration Guide

This all-encompassing configuration guide includes chapters on configuration interfaces (serial and SelectMAP), bitstream encryption, Boundary-Scan and JTAG configuration, reconfiguration techniques, and readback through the SelectMAP and JTAG interfaces.

Virtex-5 Packaging Specifications

This specification includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications.

Additional Support Resources

To search the database of silicon and software questions and answers, or to create a technical support case in WebCase, see the Xilinx website at: http://www.xilinx.com/support.

This document uses the following typographical conventions. An example illustrates each convention.

Convention	Meaning or Use	Example
Italic font	References to other documents	See the Virtex-5 <i>Configuration Guide</i> for more information.
	Emphasis in text	The address (F) is asserted <i>after</i> clock event 2.
Underlined TextIndicates a link to a web page.		http://www.xilinx.com/virtex5

Online Document

The following conventions are used in this document:

Convention	Meaning or Use	Example	
Blue text	Cross-reference link to a location in the current document	See the section "Additional Documentation" for details.	
Red text	Cross-reference link to a location in another document	See Figure 2-5 in the <i>Virtex-5 Data Sheet</i>	
Blue, underlined text	Hyperlink to a website (URL)	Go to <u>http://www.xilinx.com</u> for the latest documentation.	

XILINX®

ML501 Reference Design

Introduction

The Virtex-5 family of FPGAs [Ref 1] offers designers multiple platforms with an optimized balance of high-performance logic, serial connectivity, signal processing, and embedded processing resources. All members of the Virtex-5 family are built using the second generation Advanced Silicon Modular Block (ASMBLTM) technology and a state-of-the-art 65 nm copper process to produce the industry's highest performance FPGAs.

Along with capabilities offered directly through an integrated IP block implemented in silicon, the Xilinx LogiCORE IP catalog and the <u>embedded processing IP</u> catalog are available to system level designers. Constructing embedded processing systems is significantly simplified by the Base System Builder (BSB) wizard provided as part of the Embedded Development Kit (EDK).

Users can obtain a quick understanding of the features offered by the ML501 boards by running the demonstration content provided on the CompactFlash (CF) card included with each board. *ML501 Getting Started Tutorial* [Ref 2] shows how to configure the ML501 from the ACE files pre-loaded on the CF card and describes what to observe for expected output.

www.xilinx.com

Reference Designs

Base System Builder

The BSB wizard helps designers quickly create a working embedded system using a pointand-click GUI to select a Xilinx processor and an associated set of desired peripherals. BSB generated designs for the ML501 are available at:

• http://www.xilinx.com/products/boards/ml501/reference_designs.htm#bsb_design

The tutorial describes how to use the EDK BSB wizard, described in the *Embedded System Tools Reference Manual* [Ref 4], to create a hardware design for the ML501 platform. Figure 1 shows a block diagram of the MicroBlazeTM processor based embedded system generated by BSB. A set of basic software test applications are also generated to verify the functionality of the peripherals instantiated within the BSB design.

The BSB design can be further customized within the Xilinx Platform Studio (XPS) environment to add additional standard EDK IP or user-created IP cores.

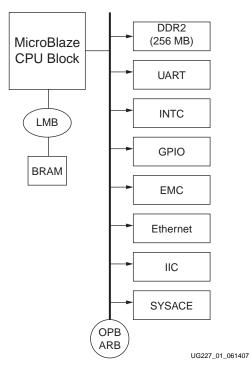


Figure 1: Base System Builder Block Diagram

EDK Design

This ML501 reference design utilizes the Embedded Development Kit (EDK) to create an embedded processing system using the MicroBlaze processor and the extensive set of peripherals offered through the EDK IP catalog. The ML501 EDK reference design contains a complete EDK project that can be used to explore the features of the ML501 platforms. The *Overview and Setup* presentation shows how to set up the design and the test environment. The *Stand-Alone Application* presentation shows how to exercise the reference design using the included software applications. EDK designs for the ML501 are available at:

• http://www.xilinx.com/products/boards/ml501/reference_designs.htm#ref_design

Figure 2 shows a high-level block diagram of the hardware used in the ML501 reference design.

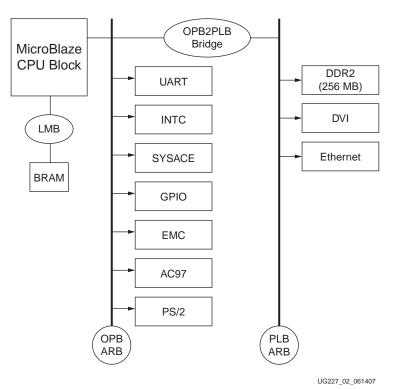


Figure 2: ML501 High-Level Block Diagram

Stand-Alone Software Applications

Software applications (Table 1) that run on the EDK hardware reference design can be compiled within EDK and downloaded to the ML501 with a JTAG download cable for verification. A set of pre-built ELF and ACE files as well as a readme.txt file explaining how to run each of the applications for the ML501 are available at:

<u>http://www.xilinx.com/products/boards/ml501/reference_designs.htm#ref_design</u>

Table 1: Demonstration Software Applications

Name	Description
ml501_mb_standalone_apps_bit_elf_ace.zip	Complete collection of stand-alone BIT, ELF, and ACE files. To run each application individually, select one of the ACE files and replace system_my_ace.ace in configuration address 6 of the production ML501 CF card.
download.bit	MicroBlaze embedded processing system running bootloop code.
bootload.elf bootload.ace bootload_readme.txt	Main menu to load and launch ACE file demonstrations.
button_led_test.elf button_led_test.ace button_led_test_readme.txt	Verifies functionality of GPIO DIP switches, GPIO LEDs, N-E-S-W buttons and LEDs.
flash_hello.elf flash_hello_readme.txt	Placeholder application for a user-generated linear flash design. Loaded from linear flash.
flash_test.elf flash_test.ace flash_test_readme.txt	Tests linear flash memory.
hello.elf hello.ace hello_readme.txt	Exercises serial port output and input functionality using libc routines.
hello_uart.elf hello_uart.ace hello_uart_readme.txt	Exercises serial port output and input functionality using low-level UART driver routines.
iic_eeprom.elf iic_eeprom.ace iic_eeprom_readme.txt	Software bit-banging tests of IIC EEPROM.
my_ace.elf my_ace.ace my_ace_readme.txt	Placeholder application for a user-generated ACE file. Loaded from CompactFlash card.
my_plat_flash.elf my_plat_flash_readme.txt	Placeholder application for a user-generated Platform Flash design. Loaded from Platform Flash.
piezo.elf piezo.ace ringtones.zip piezo_readme.txt	Demonstrates audio output to the onboard piezo speaker using the ringtone RTTTL files.

Name	Description
ps2_scancodes_polled.elf ps2_scancodes_polled.ace ps2_scancodes_polled_readme.txt	Shows the scancodes from devices attached to the PS/2 input ports.
simon.elf simon.ace simon_readme.txt	Interactive game using N, E, S, W buttons and LEDs as well as the LCD panel.
slideshow.elf slideshow.ace slides.zip slideshow_readme.txt	A self-running audio and video presentation highlighting features of the ML501 and Virtex-5 technology.
spi_hello.elf spi_hello_readme.txt	Placeholder application for a user-generated SPI Flash design. Loaded from SPI Flash.
sysace_rebooter.elf sysace_rebooter.ace sysace_rebooter_readme.txt	User-selectable loading of ACE files utilizing the System ACE CF controller.
test_ac97.elf test_ac97.ace test_ac97_readme.txt	Records and plays back audio using the AC97 controller.
testfatfs.elf testfatfs.ace testfatfs.zip testfatfs_readme.txt	Write and read test of the FAT file system on the CompactFlash card.
usb_hpi_test.elf usb_hpi_test.ace demo.bin usb_hpi_test_readme.txt	USB host interface test utilizing a USB keyboard.
usb_printer.elf usb_printer.ace printer.bin usb_printer_readme.txt	USB host interface test utilizing a USB printer.
webserver.elf webserver.ace webserver_readme.txt	Web browser based control of GPIO LEDs and display of GPIO DIP switch status over Ethernet.
xrom.elf xrom.ace xrom_readme.txt	Board tests/diagnostics.

Table 1: Demonstration Software Applications (Continued)

References

Documents supporting Virtex-5 devices and the ML501 Evaluation Platform are:

- 1. <u>DS100</u>, Virtex-5 Family Overview: LX, LXT, and SXT Platforms.
- 2. <u>UG228</u>, ML501 Getting Started Tutorial.
- 3. <u>UG226</u>, ML501 Evaluation Platform User Guide.
- 4. UG111, Embedded System Tools Reference Manual, EDK 9.1i.
- 5. <u>UG191</u>, Virtex-5 FPGA Configuration User Guide.
- 6. <u>UG029</u>, *ChipScope Pro Software and Cores User Guide*.